Fitting models to areal data

o | will start with a simple model, using species diversity data
o Strong spatial dependence, [ = 0.79
@ what is the mean diversity? How precise is our estimate?
@ Sampling discussion:
o The 64 squares are a systematic sample: Only have 1 sample

o If treat as a simple random sample,
o usual se probably wrong
@ So shift to model-based inference
o If assume each square independent, i = 6.09, se ji = 0.36
o But we know that model is wrong
o If we assume spatially correlated, what changes?
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Spatial inference

o If recognize the spatial correlation between nearby squares, i = 5.69,
se i = 1.69
o Difference in estimates is not too big (7% change)
o Difference in se's is huge (470% change)
@ This data set has 64 obs
o | find it very helpful to compare sample sizes for equal se's, rather
than directly compare se's.
e So, under the correlated data model, how many obs. needed to get se
=0.367
o A: 1410! Huge number! Spatial correlation matters!
e (BTW, also for geostatistical models)
o Computed as 64 * (1.69/0.36)>
o Correlated model: Variance from 64 obs is 1.692 = 2.856
o Variance from 128 obs will be 2.856/2.
o Variance from N obs will be 2.856/(N/64). Want = 0.36%. Solve for N
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Accounting for spatial correlation

o How did | get estimates and se's “recognizing the spatial correlation”?
@ Three common approaches
o 1) Simultaneous Autoregressive (SAR) Model
o 2) Conditional Autoregressive (CAR) Model
o 3) geostatistical model
o Geostatistical model can be used for either point or areal data
@ We will consider each in turn.
@ First need to talk about:

o Describing correlated data (multivariate normal distributions)
o Regression using matrices
o Regression with correlated data
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Multivariate normal distributions

o Usual 401 setup: Y; iid N(ui,o?)
o Mean, p;, for each observation may be constant, dependent on
treatment, or unique to each observation (e.g., 8o + 51 Xi)
o Variance same for each obs. (no subscript on ¢2)
o Independent observations

o Now, need to describe correlations among pairs of observations

Y; ~ N(ui,0?) is not sufficient

@ Towards that goal: collect all the observations in a vector Y
Y1
Y2 ,

oY= LY =Y Y]

Yo
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Multivariate normal distributions

. ,
o Collect the means into a vector: p = [p1 pt2 -+ fin)
@ Variance now becomes the variance-covariance matrix
@ Consider 3 random variables, X, Y and Z
o VC matrix is a 3 x 3 matrix
2
Ox OXy Oxz
_ 2
Y= |oxy o0y Ovyz
0xz Oyz 0%z

@ When n values of Y, VC matrix isn x n
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Variances and covariances

o Diagonal values are variances:
% =Var X = E (X — ux)?
ox = Var X =E ( px)
o Off diagonal values are covariances:

oxy =Cov X, Y =E (X —ux)(Y — py)

Cov X, Y = Cov Y, X, so VC matrix is symmetric
variance X is covariance of X with itself:

E(X = ux)* = E(X = px)(X = pux)

correlation between X and Y is

Cov X, Y

CorX,Y = ————
' vVar X Var Y

Cov = 0 means Cor = 0

In general, independent means Cov = 0.

o When observations have Multivariate normal distribution, Cov = 0
means independent
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Multivariate normal distribution

@ So can write VC matrix for “401" observations
(independent, constant variance)

62 0 0 -~ 0 10 0 --- 0

0 02 0 --- 0 ,[01 0 -0 )
3= . L . . =0 L . . =o°l

00 0 .- o2 00 0 - 1

@ | is the identity matrix.
o matrix equivalent of the scalar 1
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Least squares regression, again

o Model: Y; =8y + 51 Xi + &

o Can write down (but won't) equations to estimate 3y and /31

@ Do not generalize easily to more parameters, e.g.,
Zi=Po+ P Xi+ B2Yit e

o Can use matrices to simplify everything

1 X 150+ X1 51

1 X 150+ Xo 1
X=|1 X3 ,g:{go]’xﬂ: 150+ X3 A1

. . 1 .

1 X, 160+ Xn f1

o Model: Y =XB+¢

o Can have many columns in X, or just 1
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Least squares regression, again

@ For any regression model with independent errors:
A N1,
Bots = (x x) X'y

o ()71 is the matrix inverse, equivalent of scalar reciprocal
o XX '=1land X'X=1
o labeled OLS for ordinary least squares

o will see another type of LS soon (for correlated obs)

@ and Var BO/S =2 (XIX) o
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Least squares regression, again

o Example: constant mean, Y; = u+¢;

o

1

1

X=|1] 8=y

1

° -1
x’x:1’1:1+1+.-.:n,<x’x) =1/n

]

XY=1Y=Yi4+ Yo+ -+ Y,=%Y

« L, oN-1
0 50 s = (X'X)  X'Y = £Y/nand Var p = 0/
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Generalized Least Squares

@ When errors are independent, each obs. is an additional piece of

information
@ Two positively correlated observations are less than 2 pieces of
information
]
w
9
L]
o H
2
> .
n .
@ |
o
e
.
T T T T T T I
1 2 3 4 5 6 7
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Generalized Least Squares
o Model:

Y=XB+e, Vare=X
@ Estimates: 1
Bas = (x’):*lx) X'sly
o What happens when £ = 52?7
X , 1,
B = (x ):*lx) X'z ly
, 1,
- (x (021)—1x) X (o21)"ty
, 1,
= (x (1/02)x) X' (1/0®)Y
’ -1 , A
= o%(1/0%) (x x) X'Y =B,

o the GLS estimator simplifies to the usual OLS estimator
o when observations are independent with constant variance
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Generalized Least Squares

Another way to think about GLS

For most X, can find a “square-root” matrix, so that X = cc

Apply this idea to X! to get a square root matrix for the inverse,
we will call this B, so X! = B'B

Multiply all terms in the model by B

BY = BX3 + Be

@ Look what happens to the errors:
Var Be = BEB = BC'(CB)=11=1
@ Pre multiplying by square root of the inverse covariance matrix

removes the correlation - transformed errors are now independent!
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Generalized Least Squares

o So, if know the correlation matrix, can compute new Y* = BY and
new X* = BX
o and use OLS on X* and Y*: Y* = X*3 +¢&*
o The regression cloefficients from OLS on transflormed variables are:
0 fB= [x*’x*} (X v*) = [(x’B')(Bx)} [(X’B')(BY)}
o =(X'ZT'X)YX'T7Y)
o which are the GLS estimates for the original model
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Generalized Least Squares

@ Take home: If you know X, can compute the “best” estimates for any
regression model
@ using GLS

@ A generalization (the Aitken model) says that all you need is the
correlation part of X
o Write X as 0>C where C is (now) a correlation matrix
o only need to know C, can estimate 2.

Practical problem is that the correlation part almost always has to be
estimated

@ X (or C) depends on unknown parameters.
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SAR models

o General regression / ANOVA model
1

1
e Y=XB+e, ifX=]| . |, thenY=p+e

1

@ model spatial correlation by allowing € to depend on error values in
neighboring regions

e(si) = Zszlb,‘jEj +v(s;)

@ bjj are the elements of the spatial dependence matrix expressing
dependence among regions
@ v(s;j) is an independent random disturbance for each region.

Usually assume v(s;) i N(0, 02)
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SAR models

o What this model “means”. Some examples:
e In all:

o Focus on center observation (location s5)
o assume row standardized rook’s neighbors, so {b;} is

0 025 0
025 0 0.25
0 025 0

@ (s5) = 10 Is this value large or small?
o when bj; is not zero, depends on neighbors
o so look at v(ss) for £(s5) = 10
e and different values for neighbors ¢
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°
7 8 10
12 10 8
11 10 9
o Only the bolded neighbors matter, X bje(s;) = 9.5, v(s;) = 0.5
o large error but similar to neighbors,
so independent contribution, v/(s;) is small
°
7 16 10
14 10 12
11 16 9

o Y bje(s;) =145, v(s;)) = —4.5
o large error, but neighbors are larger,
so independent contribution, v/(s;) is negative
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°
1 1 2
3 101
1 2 3
o Y bje(sj) = 1.75, v(s;) = 8.25
o much larger than neighbor errors,
so independent contribution, v/(s;) is large
°
-5 -7 -10
-3 10 -6
-1 2 0

o Y bje(sj) = —3.5, v(s;) =135
e neighbors suggest a negative error,
so independent contribution, v(s;) is very large
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SAR models

@ When part of the variation in error values can be “explained” by
neighbors, the “explained” part is removed under the SAR model.
@ Both SAR and CAR models do this, but they define “explained”
differently
@ SAR model: applies to all locations simultaneously
@ For one location: &(s;) = Zszlb,‘jfj +v(si)
@ For all locations: € = Be + v, which means:
ev=e—Be=(l-B)
ee=(-B)"tv
o Y=X3+(-B)"tv
where I is the NxN identity matrix. B is the matrix of “connectivity”
coefficients
and v is the vector of independent errors
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SAR model in matrix terms

o If consider Y = X3 + €, then the Var-Cov matrix of € is
(I-B)'5,(1- B!

B can be arbitrary, but it has N(N-1) parameters. usually simplify
using a model

usually write B = pW, where p is a coefficient of spatial dependence
and W is the spatial weight matrix

Note p = 0 = locations are connected (elements of W > 0), but not
spatially dependent

@ What does this model imply about VC matrix of the observations?

o Consider p = 0.9, W is rook’s neighbors, row standardized, X, = a2l

@ Pictures on next few slides

Philip M

Correlation declines with distance: good!
But Var Y not constant - largest in corners, smalest in middle of region
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08

0.6

0.4

0.2

0.0

(lowa State Univ.) Spatial Data Analysis - Part 5b Spring 2020

Correlation with [4,4]

08

0.6

0.4

0.2

(lowa State Univ.) Spatial Data Analysis - Part 5b Spring 2020

Variance of Y

7.0

65

6.0

55

5.0

(lowa State Univ.) Spatial Data Analysis - Part 5b



AR models

@ Notice modeling correlation between observations indirectly
e B describes how one error value depends on the values of neighboring
values
o describing connections between observations, not correlation
o Correlated errors is a consequence of those connections
o As is unequal variances
o A geostatistical model directly describes correlations
o Preference is subject-matter dependent
o Spatial econometrics, most areal data analysis, connections
o Spatial statistics, geostatistical data, correlations
o Degree of non-constant variance depends on magnitude of p
@ Similar plots for p = 0.5
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Variance, rho = 0.5
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Correlation with [1,1], rho = 0.5
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Correlation with [4,4], rho = 0.5
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Estimation for SAR models

o Reminder: model is Y = X3+ (I — B) v,
where B = pW
W is the known spatial weight matrix
IF p is known, then B is known, only need to estimate ,@
Easy:
o 1) calculate ¥, = (I — B)~'%, (I — B)~! and use GLS, or
o 2) Note that: (I —B)Y = (I — B)(XB)+v
transform Y vector and X matrix, and you have an OLS problem.
@ Usual situation: p is unknown, need to estimate
o use maximum likelihood
o general alternative to LS for any statistical problem
o Have already seen the VC matrix for e: £, = (I — B)™1X,(I — B)™1,
where B = pW
e mvNormal Inl is

k 1 1 [
—5 log2m — S log | T | —5(y = XB) XM (y — XB)
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Maximizing the mvN InL

Iterative algorithm.

Key insight is that given X, mle of 3 is trivial (GLS)
Assume p = 0, find OLS estimate of 3

Condition on (3, use numerical maximization to find p | 8
find GLS estimate of 3 for X.(p)

repeat last two steps until convergence.

Traditional frequentist approach is to estimate 3 and Var 3
conditional on p

Bayesian approach incorporates uncertainty in j into uncertainty
about B

o Not an issue for simple problems (e.g. . = 02I) because in this
case, ,@ independent of o2

Is in issue in these models because p and ,@ are not independent.
o For sp diversity data, p = 0.914.
That is strong positive spatial dependence.
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Useful things about likelihood

o test hypotheses using Likelihood Ratio Test (LRT)

o eg. test Ho:p=0

calculate InL given p = 0 (need to maximize over f3): InLg

calculate InL at mle's of all parameters: InL

InLa > InLg, because p probably not 0

but by how much? ~ 0 = data consistent with p = 0 = accept Ho
but how much is “too far" from 07

General result: When Ho true, —2(InLo — Inls) ~ X3 where k is the
difference in # parameters between the two models

This is an asymptotic result, but surprisinly effective in small samples

o Here, k = 1 because testing hypothesis about 1 parameter

o InLa =-112.137
InLp = -158.306
A = —=2(InLo — InLa) = 92.34

o X095 = 3.84. Here p << 0.0001
o LRT only works when one model is a simplification of another
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Useful things about likelihood

@ Model selection: e.g. compare different W matrices
e AIC=-2InL +2k
o k is # of parameters. spdep counts 3, 02, and p
o Can compare models with same number of parameters, or diff. #
parameters
choose model with smallest AIC
Compare row-standardized (style="W') to binary (style='B’) weights
Different models for connections between areas
= Different variance and covariance relationships
Here, 3 parameters (, o°, and p)
Row std: AIC = 224.27 4+ 6 = 230.2742
Binary: AIC = 23554 + 6 = 241.54
Choose model with Row std weights.
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Reminders about interpretation of AIC

o Size of AIC irrelevant
o doesn't matter whether best = 1000 or best = -250
o Only comparisons among models fit to the same data
@ Does not mean row std. is the "correct” model.

o Only best among the set being considered.
o model diagnostics still very important and useful

o | don't know any that evaluate choice of weight matrix
o Smallest AIC is “best” model - Is anything almost as good?

o Models with AIC within 2 units of the best are likely alternatives
e Models with AIC > 10 units of the best are unlikely
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Useful things about likelihood

@ confidence interval for p by profile likelihood
o Concept: Repeat LRT for many values of p
o include inside 95% ci all values of p for which test has p > 0.05
o here (0.82, 0.98)
@ consequences of choice of p on inference about 3
e p =0 (independence): fi = 6.09, se = 0.36
o p=0914: i =569, se = 1.69
@ Two points:

o just demonstrated non-independence of  and 3 in a SAR model
o se of /i when account for correlation much larger

@ observations are positively correlated, so fewer “effective” observations
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CAR models

@ SAR models all Y values simultaneously

@ CAR models distrib of a each Y given the values of its neighbors
Yi | Yoi=XiB+ZiLici(Y — X;B) + vi

@ RHS same as SAR model

o The difference is that Y_; now treated as fixed values when specifying
distrib of Y;

o Diff. VC matrix for obs.: X, = Var Y = (I - C)7'%,
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@ to be a valid VC matrix, requires some conditions:
e p can not be too large
o Definition depends on the weight matrix, W
o C must be symmetric, Cj = Cj
e so my example now uses binary weights
@ Practical difference: correlation pattern similar
o Pictures on next slide
o correl between pairs in middle higher among than between middle and
edge
o similar to SAR pattern, but details slightly different
o But pattern of variance quite different

o biggest var in the middle of the area (more connections to other points)
o Fitting a CAR model gives: i =5.10, se = 0.83, p = 0.253.

@ 0.253 doesn’t seem large, but close to maximum possible value
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Correlation with [1,1], CAR

r0.8

r06

ro4

r02

r0.0
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Correlation with [4,4], CAR

ros

r06

ro4

r02
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Variance, CAR

r28

r26

r24

r22

r20
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o Different variance and correlation pattern = CAR and SAR are not
the same models

@ Which fits the data better? How will you answer this Q?
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Model comparison

o | would use AIC

model AIC

SAR  241.54
® CAR 26238

Indep  320.61

o Clear dominance of SAR model
@ Traditional interpretation

o AIC w/i 2 of the top: worse model is reasonable competitor
o AIC more than 10 from the top: worse model is very unlikely

o For Bayesian analysis, CAR models very, very popular
o They are easy to use in an MCMC chain, because they are conditional
distributions
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Smoothing noisy areal data
div CarPred 0
10
8
6
4
2
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Comparison of smoothing using CAR and SAR

SarPred CarPred 0
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More complicated models

What if you have X variables measured for each area?
Easy to include in the model
My example: soil pH measured in each area

the small quadrats cross from igneous parent material (lower pH) to
limestone parent material (higher pH)

@ Residuals from OLS regression are spatially correlated

e Moran’'s I: 0.62

o less than | for observations = 0.79

@ Pictures on next three slides
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# species vs. Soil pH
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Residuals from linear regression
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Results from pH models

Model fBpy se AIC
Indep. 356 0.43 - 275.06
SAR 1.93 0.66 0.86 225.77
CAR 328 052 026 233.78

@ Pictures of the two fits on next slide
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SAR and CAR fits

fitsar fitcar
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SAR and CAR fits: trend component = X

trendsar trendcar
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Why is SAR slope for pH much lower?

@ When X variable is spatially correlated

o X and the spatial correlation “fight” to predict Y
e analogous to two correlated X variables: pH and “space”

o Commonly seen when using spatial correlated errors
o “The effect you love disappears”
o For these data:

o SAR fit: smaller By, higher correlation
o CAR fit: larger B, smaller correlation
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Comparison of intercept only to pH SAR models
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Comparison of intercept only to pH SAR models

fitsarO fitsar
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