
Fitting models to areal data

I will start with a simple model, using species diversity data

Strong spatial dependence, Î = 0.79

what is the mean diversity? How precise is our estimate?

Sampling discussion:

The 64 squares are a systematic sample: Only have 1 sample
If treat as a simple random sample,
usual se probably wrong

So shift to model-based inference

If assume each square independent, µ̂ = 6.09, se µ̂ = 0.36
But we know that model is wrong
If we assume spatially correlated, what changes?

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 5b Spring 2020 1 / 53

Spatial inference

If recognize the spatial correlation between nearby squares, µ̂ = 5.69,
se µ̂ = 1.69

Difference in estimates is not too big (7% change)
Difference in se’s is huge (470% change)

This data set has 64 obs

I find it very helpful to compare sample sizes for equal se’s, rather
than directly compare se’s.

So, under the correlated data model, how many obs. needed to get se
= 0.36?
A: 1410! Huge number! Spatial correlation matters!
(BTW, also for geostatistical models)

Computed as 64 ∗ (1.69/0.36)2

Correlated model: Variance from 64 obs is 1.692 = 2.856
Variance from 128 obs will be 2.856/2.
Variance from N obs will be 2.856/(N/64). Want = 0.362. Solve for N
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Accounting for spatial correlation

How did I get estimates and se’s “recognizing the spatial correlation”?

Three common approaches

1) Simultaneous Autoregressive (SAR) Model
2) Conditional Autoregressive (CAR) Model
3) geostatistical model

Geostatistical model can be used for either point or areal data

We will consider each in turn.

First need to talk about:

Describing correlated data (multivariate normal distributions)
Regression using matrices
Regression with correlated data
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Multivariate normal distributions

Usual 401 setup: Yi
iid∼ N(µi , σ

2)

Mean, µi , for each observation may be constant, dependent on
treatment, or unique to each observation (e.g., β0 + β1 Xi )
Variance same for each obs. (no subscript on σ2)
Independent observations

Now, need to describe correlations among pairs of observations

Yi ∼ N(µi , σ
2) is not sufficient

Towards that goal: collect all the observations in a vector Y

Y =


Y1

Y2
...
Yn

, Y
′

= [Y1 Y2 · · · Yn]
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Multivariate normal distributions

Collect the means into a vector: µ
′

= [µ1 µ2 · · · µn]

Variance now becomes the variance-covariance matrix

Consider 3 random variables, X, Y and Z

VC matrix is a 3 x 3 matrix

Σ =

 σ2X σXY σXZ
σXY σ2Y σYZ
σXZ σYZ σ2Z


When n values of Y , VC matrix is n x n
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Variances and covariances

Diagonal values are variances:

σ2X = Var X = E (X − µX )2

Off diagonal values are covariances:

σXY = Cov X , Y = E (X − µX )(Y − µY )

Cov X ,Y = Cov Y ,X , so VC matrix is symmetric
variance X is covariance of X with itself:
E (X − µX )2 = E (X − µX )(X − µX )
correlation between X and Y is

CorX ,Y =
Cov X ,Y√

Var X Var Y

Cov = 0 means Cor = 0
In general, independent means Cov = 0.
When observations have Multivariate normal distribution, Cov = 0
means independent
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Multivariate normal distribution

So can write VC matrix for “401” observations
(independent, constant variance)

Σ =


σ2 0 0 · · · 0
0 σ2 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · σ2

 = σ2


1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · 1

 = σ2I

I is the identity matrix.

matrix equivalent of the scalar 1
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Least squares regression, again

Model: Yi = β0 + β1 Xi + εi

Can write down (but won’t) equations to estimate β0 and β1

Do not generalize easily to more parameters, e.g.,
Zi = β0 + β1 Xi + β2Yi + εi

Can use matrices to simplify everything

X =


1 X1

1 X2

1 X3
...

...
1 Xn

 ,β =

[
β0
β1

]
,Xβ =


1 β0 + X1 β1
1 β0 + X2 β1
1 β0 + X3 β1

...
1 β0 + Xn β1


Model: Y = Xβ + ε

Can have many columns in X , or just 1
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Least squares regression, again

For any regression model with independent errors:

β̂ols =
(
X
′
X
)−1

X
′
Y

()−1 is the matrix inverse, equivalent of scalar reciprocal

XX−1 = I and X−1X = I
labeled OLS for ordinary least squares

will see another type of LS soon (for correlated obs)

and Var β̂ols = σ2
(
X
′
X
)−1
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Least squares regression, again

Example: constant mean, Yi = µ+ εi

X =


1
1
1
...
1

 , β = [µ]

X
′
X = 1

′
1 = 1 + 1 + · · · = n,

(
X
′
X
)−1

= 1/n

X
′
Y = 1

′
Y = Y1 + Y2 + · · ·+ Yn = ΣY

so β̂ols =
(
X
′
X
)−1

X
′
Y = ΣY /n and Var µ̂ = σ2/n
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Generalized Least Squares

When errors are independent, each obs. is an additional piece of
information
Two positively correlated observations are less than 2 pieces of
information
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Generalized Least Squares

Model:
Y = Xβ + ε, Var ε = Σ

Estimates:

β̂gls =
(
X
′
Σ−1X

)−1
X
′
Σ−1Y

What happens when Σ = σ2I?

β̂gls =
(
X
′
Σ−1X

)−1
X
′
Σ−1Y

=
(
X
′
(σ2I )−1X

)−1
X
′
(σ2I )−1Y

=
(
X
′
(1/σ2)X

)−1
X
′
(1/σ2)Y

= σ2(1/σ2)
(
X
′
X
)−1

X
′
Y = β̂ols

the GLS estimator simplifies to the usual OLS estimator
when observations are independent with constant variance
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Generalized Least Squares

Another way to think about GLS

For most Σ, can find a “square-root” matrix, so that Σ = C
′
C

Apply this idea to Σ−1 to get a square root matrix for the inverse,
we will call this B, so Σ−1 = B ′B
Multiply all terms in the model by B

BY = BXβ + Bε

Look what happens to the errors:

Var Bε = BΣB
′

= BC
′
(CB

′
) = I I = I

Pre multiplying by square root of the inverse covariance matrix
removes the correlation - transformed errors are now independent!
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Generalized Least Squares

So, if know the correlation matrix, can compute new Y ∗ = BY and
new X ∗ = BX
and use OLS on X ∗ and Y ∗: Y ∗ = X ∗β + ε∗

The regression coefficients from OLS on transformed variables are:

β =
[
X ∗′

X ∗
]−1

(X ∗′
Y ∗) =

[
(X

′
B

′
)(BX )

]−1 [
(X

′
B

′
)(BY )

]
= (X

′
Σ−1X )−1(X

′
Σ−1Y )

which are the GLS estimates for the original model
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Generalized Least Squares

Take home: If you know Σ, can compute the “best” estimates for any
regression model

using GLS

A generalization (the Aitken model) says that all you need is the
correlation part of Σ

Write Σ as σ2C where C is (now) a correlation matrix
only need to know C , can estimate σ2.

Practical problem is that the correlation part almost always has to be
estimated

Σ (or C ) depends on unknown parameters.
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SAR models

General regression / ANOVA model

Y = Xβ + ε, if X =


1
1
...
1

, then Y = µ+ ε

model spatial correlation by allowing ε to depend on error values in
neighboring regions

ε(si ) = ΣN
j=1bijεj + ν(si )

bij are the elements of the spatial dependence matrix expressing
dependence among regions

ν(si ) is an independent random disturbance for each region.

Usually assume ν(si )
iid∼ N(0, σ2ν)
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SAR models

What this model “means”. Some examples:

In all:

Focus on center observation (location s5)
assume row standardized rook’s neighbors, so {bij} is

0 0.25 0
0.25 0 0.25
0 0.25 0

ε(s5) = 10 Is this value large or small?

when bij is not zero, depends on neighbors
so look at ν(s5) for ε(s5) = 10
and different values for neighbors ε
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7 8 10
12 10 8
11 10 9

Only the bolded neighbors matter, Σbijε(sj) = 9.5, ν(si ) = 0.5
large error but similar to neighbors,
so independent contribution, ν(si ) is small

7 16 10
14 10 12
11 16 9

Σbijε(sj) = 14.5, ν(si ) = −4.5
large error, but neighbors are larger,
so independent contribution, ν(si ) is negative
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1 1 2
3 10 1
1 2 3

Σbijε(sj) = 1.75, ν(si ) = 8.25
much larger than neighbor errors,
so independent contribution, ν(si ) is large

−5 −7 −10
−3 10 −6
−1 2 0

Σbijε(sj) = −3.5, ν(si ) = 13.5
neighbors suggest a negative error,
so independent contribution, ν(si ) is very large
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SAR models

When part of the variation in error values can be “explained” by
neighbors, the “explained” part is removed under the SAR model.

Both SAR and CAR models do this, but they define “explained”
differently

SAR model: applies to all locations simultaneously

For one location: ε(si ) = ΣN
j=1bijεj + ν(si )

For all locations: ε = Bε+ ν, which means:

ν = ε− Bε = (I − B)ε
ε = (I − B)−1ν

Y = Xβ + (I − B)−1ν

where I is the NxN identity matrix. B is the matrix of “connectivity”
coefficients
and ν is the vector of independent errors
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SAR model in matrix terms

If consider Y = Xβ + ε, then the Var-Cov matrix of ε is
(I − B)−1Σν(I − B ′

)−1

B can be arbitrary, but it has N(N-1) parameters. usually simplify
using a model
usually write B = ρW , where ρ is a coefficient of spatial dependence
and W is the spatial weight matrix
Note ρ = 0⇒ locations are connected (elements of W > 0), but not
spatially dependent

What does this model imply about VC matrix of the observations?

Consider ρ = 0.9, W is rook’s neighbors, row standardized, Σν = σ2I
Pictures on next few slides

Correlation declines with distance: good!
But Var Y not constant - largest in corners, smalest in middle of region
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Correlation with [4,4]
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Variance of Y
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SAR models

Notice modeling correlation between observations indirectly
B describes how one error value depends on the values of neighboring
values
describing connections between observations, not correlation
Correlated errors is a consequence of those connections
As is unequal variances

A geostatistical model directly describes correlations
Preference is subject-matter dependent

Spatial econometrics, most areal data analysis, connections
Spatial statistics, geostatistical data, correlations

Degree of non-constant variance depends on magnitude of ρ
Similar plots for ρ = 0.5
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Variance, rho = 0.5
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Correlation with [1,1], rho = 0.5
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Correlation with [4,4], rho = 0.5
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Estimation for SAR models

Reminder: model is Y = Xβ + (I − B)−1ν,

where B = ρW
W is the known spatial weight matrix

IF ρ is known, then B is known, only need to estimate β̂

Easy:
1) calculate Σε = (I − B)−1Σν(I − B)−1 and use GLS, or
2) Note that: (I − B)Y = (I − B)(Xβ) + ν
transform Y vector and X matrix, and you have an OLS problem.

Usual situation: ρ is unknown, need to estimate
use maximum likelihood
general alternative to LS for any statistical problem
Have already seen the VC matrix for ε: Σε = (I − B)−1Σν(I − B)−1,
where B = ρW
mvNormal lnl is

−k

2
log 2π − 1

2
log | Σε | −

1

2
(y − Xβ)

′
Σ−1
ε (y − Xβ)
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Maximizing the mvN lnL

Iterative algorithm.

Key insight is that given Σε, mle of β is trivial (GLS)

Assume ρ = 0, find OLS estimate of β

Condition on β, use numerical maximization to find ρ̂ | β
find GLS estimate of β for Σε(ρ)

repeat last two steps until convergence.

Traditional frequentist approach is to estimate β and Var β
conditional on ρ̂

Bayesian approach incorporates uncertainty in ρ̂ into uncertainty
about β

Not an issue for simple problems (e.g. Σε = σ2I ) because in this
case, β̂ independent of σ2

Is in issue in these models because ρ̂ and β̂ are not independent.

For sp diversity data, ρ̂ = 0.914.
That is strong positive spatial dependence.
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Useful things about likelihood

test hypotheses using Likelihood Ratio Test (LRT)

e.g. test Ho : ρ = 0

calculate lnL given ρ = 0 (need to maximize over β): lnL0

calculate lnL at mle’s of all parameters: lnLA

lnLA ≥ lnL0, because ρ probably not 0
but by how much? ∼ 0⇒ data consistent with ρ = 0⇒ accept Ho
but how much is “too far” from 0?
General result: When Ho true, −2(lnL0 − lnlA) ∼ χ2

k where k is the
difference in # parameters between the two models
This is an asymptotic result, but surprisinly effective in small samples

Here, k = 1 because testing hypothesis about 1 parameter
lnLA = -112.137
lnL0 = -158.306

∆ = −2(lnL0 − lnLA) = 92.34

χ2
1,0.95 = 3.84. Here p << 0.0001

LRT only works when one model is a simplification of another
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Useful things about likelihood

Model selection: e.g. compare different W matrices

AIC = -2 lnL + 2 k
k is # of parameters. spdep counts β, σ2, and ρ
Can compare models with same number of parameters, or diff. #
parameters
choose model with smallest AIC
Compare row-standardized (style=’W’) to binary (style=’B’) weights
Different models for connections between areas
⇒ Different variance and covariance relationships

Here, 3 parameters (µ, σ2, and ρ)
Row std: AIC = 224.27 + 6 = 230.2742
Binary: AIC = 235.54 + 6 = 241.54
Choose model with Row std weights.
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Reminders about interpretation of AIC

Size of AIC irrelevant

doesn’t matter whether best = 1000 or best = -250
Only comparisons among models fit to the same data

Does not mean row std. is the “correct” model.

Only best among the set being considered.
model diagnostics still very important and useful

I don’t know any that evaluate choice of weight matrix

Smallest AIC is “best” model - Is anything almost as good?

Models with AIC within 2 units of the best are likely alternatives
Models with AIC > 10 units of the best are unlikely
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Useful things about likelihood

confidence interval for ρ by profile likelihood

Concept: Repeat LRT for many values of ρ
include inside 95% ci all values of ρ for which test has p > 0.05
here (0.82, 0.98)

consequences of choice of ρ on inference about β

ρ = 0 (independence): µ̂ = 6.09, se = 0.36
ρ = 0.914: µ̂ = 5.69, se = 1.69

Two points:

just demonstrated non-independence of ρ̂ and β̂ in a SAR model
se of µ̂ when account for correlation much larger

observations are positively correlated, so fewer “effective” observations
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CAR models

SAR models all Y values simultaneously

CAR models distrib of a each Y given the values of its neighbors

Yi | Y−i = X iβ + ΣN
j=1cij(Yj − X jβ) + νi

RHS same as SAR model

The difference is that Y−i now treated as fixed values when specifying
distrib of Yi

Diff. VC matrix for obs.: Σε = Var Y = (I − C )−1Σν
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to be a valid VC matrix, requires some conditions:

ρ can not be too large
Definition depends on the weight matrix, W
C must be symmetric, Cij = Cji

so my example now uses binary weights

Practical difference: correlation pattern similar

Pictures on next slide
correl between pairs in middle higher among than between middle and
edge
similar to SAR pattern, but details slightly different

But pattern of variance quite different

biggest var in the middle of the area (more connections to other points)

Fitting a CAR model gives: µ̂ = 5.10, se = 0.83, ρ̂ = 0.253.

0.253 doesn’t seem large, but close to maximum possible value
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Correlation with [1,1], CAR
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Correlation with [4,4], CAR
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Variance, CAR
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Different variance and correlation pattern ⇒ CAR and SAR are not
the same models

Which fits the data better? How will you answer this Q?
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Model comparison

I would use AIC
model AIC
SAR 241.54
CAR 262.38
Indep 320.61

Clear dominance of SAR model

Traditional interpretation

AIC w/i 2 of the top: worse model is reasonable competitor
AIC more than 10 from the top: worse model is very unlikely

For Bayesian analysis, CAR models very, very popular

They are easy to use in an MCMC chain, because they are conditional
distributions
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Smoothing noisy areal data
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Comparison of smoothing using CAR and SAR
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More complicated models

What if you have X variables measured for each area?

Easy to include in the model

My example: soil pH measured in each area

the small quadrats cross from igneous parent material (lower pH) to
limestone parent material (higher pH)

Residuals from OLS regression are spatially correlated

Moran’s I: 0.62
less than I for observations = 0.79

Pictures on next three slides
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Soil pH
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# species vs. Soil pH
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Residuals from linear regression
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Results from pH models

Model β̂pH se ρ̂ AIC
Indep. 3.56 0.43 – 275.06
SAR 1.93 0.66 0.86 225.77
CAR 3.28 0.52 0.26 233.78

Pictures of the two fits on next slide
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SAR and CAR fits
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SAR and CAR fits: trend component = X beta

trendsar trendcar

2

3

4

5

6

7

8

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 5b Spring 2020 50 / 53

Why is SAR slope for pH much lower?

When X variable is spatially correlated

X and the spatial correlation “fight” to predict Y
analogous to two correlated X variables: pH and “space”

Commonly seen when using spatial correlated errors

“The effect you love disappears”

For these data:

SAR fit: smaller βpH , higher correlation
CAR fit: larger βpH , smaller correlation
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Comparison of intercept only to pH SAR models
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Comparison of intercept only to pH SAR models
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